递归 & 分治
首先简单阐述一下递归,分治算法,动态规划,贪心算法这几个东西的区别和联系,心里有个印象就好。
递归是一种编程技巧,一种解决问题的思维方式;分治算法和动态规划很大程度上是递归思想基础上的(虽然实现动态规划大都不是递归了,但是我们要注重过程和思想),解决更具体问题的两类算法思想;贪心算法是动态规划算法的一个子集,可以更高效解决一部分更特殊的问题。
分治算法将在这节讲解,以最经典的归并排序为例,它把待排序数组不断二分为规模更小的子问题处理,这就是“分而治之”这个词的由来。显然,排序问题分解出的子问题是不重复的,如果有的问题分解后的子问题有重复的(重叠子问题性质),那么这就交给动态规划算法去解决!
递归详解¶
介绍分治之前,首先要弄清楚递归这个概念。
递归的基本思想是某个函数直接或者间接地调用自身,这样就把原问题的求解转换为许多性质相同但是规模更小的子问题。我们只需要关注如何把原问题划分成符合条件的子问题,而不需要去研究这个子问题是如何被解决的。递归和枚举的区别在于:枚举是横向地把问题划分,然后依次求解子问题,而递归是把问题逐级分解,是纵向的拆分。
以下会举例说明我对递归的一点理解, 如果你不想看下去了,请记住这几个问题怎么回答:
- 如何给一堆数字排序?答:分成两半,先排左半边再排右半边,最后合并就行了,至于怎么排左边和右边,请重新阅读这句话。
- 孙悟空身上有多少根毛?答:一根毛加剩下的毛。
- 你今年几岁?答:去年的岁数加一岁,1999 年我出生。
递归代码最重要的两个特征:结束条件和自我调用。自我调用是在解决子问题,而结束条件定义了最简子问题的答案。
1 2 3 4 | int func(传入数值) { if (终止条件) return 最小子问题解; return func(缩小规模); } |
其实仔细想想, 递归运用最成功的是什么?我认为是数学归纳法。 我们高中都学过数学归纳法,使用场景大概是:我们推不出来某个求和公式,但是我们试了几个比较小的数,似乎发现了一点规律,然后编了一个公式,看起来应该是正确答案。但是数学是很严谨的,你哪怕穷举了一万个数都是正确的,但是第一万零一个数正确吗?这就要数学归纳法发挥神威了,可以假设我们编的这个公式在第 k 个数时成立,如果证明在第 k + 1 时也成立,那么我们编的这个公式就是正确的。
那么数学归纳法和递归有什么联系?我们刚才说了,递归代码必须要有结束条件,如果没有的话就会进入无穷无尽的自我调用,直到内存耗尽。而数学证明的难度在于,你可以尝试有穷种情况,但是难以将你的结论延伸到无穷大。这里就可以看出联系了——无穷。
递归代码的精髓在于调用自己去解决规模更小的子问题,直到到达结束条件;而数学归纳法之所以有用,就在于不断把我们的猜测向上加一,扩大结论的规模,没有结束条件,从而把结论延伸到无穷无尽,也就完成了猜测正确性的证明。
为什么要写递归¶
首先为了训练逆向思考的能力。递推的思维是正常人的思维,总是看着眼前的问题思考对策,解决问题是将来时;递归的思维,逼迫我们倒着思考,看到问题的尽头,把解决问题的过程看做过去时。
第二,练习分析问题的结构,当问题可以被分解成相同结构的小问题时,你能敏锐发现这个特点,进而高效解决问题。
第三,跳出细节,从整体上看问题。再说说归并排序,其实可以不用递归来划分左右区域的,但是代价就是代码极其难以理解,大概看一下代码(归并排序在后面讲,这里大致看懂意思就行,体会递归的妙处):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | void sort(Comparable[] a){ int N = a.length; // 这么复杂,是对排序的不尊重。我拒绝研究这样的代码。 for (int sz = 1; sz < N; sz = sz + sz) for (int lo = 0; lo < N - sz; lo += sz + sz) merge(a, lo, lo + sz - 1, Math.min(lo + sz + sz - 1, N - 1)); } /* 我还是选择递归,简单,漂亮 */ void sort(Comparable[] a, int lo, int hi) { if (lo >= hi) return; int mid = lo + (hi - lo) / 2; sort(a, lo, mid); sort(a, mid + 1, hi); merge(a, lo, mid, hi); } |
看起来简洁漂亮是一方面,关键是 可解释性很强 :把左半边排序,把右半边排序,最后合并两边。而非递归版本看起来不知所云,充斥着各种难以理解的边界计算细节,特别容易出 bug 且难以调试,人生苦短,我更倾向于递归版本。
显然有时候递归处理是高效的,比如归并排序, 有时候是低效的 ,比如数孙悟空身上的毛,因为堆栈会消耗额外空间,而简单的递推不会消耗空间。比如这个例子,给一个链表头,计算它的长度:
1 2 3 4 5 6 7 8 9 10 11 | /* 典型的递推遍历框架 */ public int size(Node head) { int size = 0; for (Node p = head; p != null; p = p.next) size++; return size; } /* 我偏要递归,万物皆递归 */ public int size(Node head) { if (head == null) return 0; return size(head.next) + 1; } |
写递归的技巧¶
我的一点心得是: 明白一个函数的作用并相信它能完成这个任务,千万不要试图跳进细节。 千万不要跳进这个函数里面企图探究更多细节,否则就会陷入无穷的细节无法自拔,人脑能压几个栈啊。
先举个最简单的例子:遍历二叉树。
1 2 3 4 5 | void traverse(TreeNode* root) { if (root == nullptr) return; traverse(root->left); traverse(root->right); } |
这几行代码就足以扫荡任何一棵二叉树了。我想说的是,对于递归函数 traverse(root)
,我们只要相信:给它一个根节点 root
,它就能遍历这棵树,因为写这个函数不就是为了这个目的吗?所以我们只需要把这个节点的左右节点再甩给这个函数就行了,因为我相信它能完成任务的。那么遍历一棵 N 叉数呢?太简单了好吧,和二叉树一模一样啊。
1 2 3 4 | void traverse(TreeNode* root) { if (root == nullptr) return; for (child : root->children) traverse(child); } |
至于遍历的什么前、中、后序,那都是显而易见的,对于 N 叉树,显然没有中序遍历。
以下 详解 LeetCode 的一道题来说明 :给一棵二叉树,和一个目标值,节点上的值有正有负,返回树中和等于目标值的路径条数,让你编写 pathSum 函数:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | /* 来源于 LeetCode PathSum III: https://leetcode.com/problems/path-sum-iii/ */ root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 10 / \ 5 -3 / \ \ 3 2 11 / \ \ 3 -2 1 Return 3. The paths that sum to 8 are: 1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11 |
1 2 3 4 5 6 7 8 9 10 | /* 看不懂没关系,底下有更详细的分析版本,这里突出体现递归的简洁优美 */ int pathSum(TreeNode root, int sum) { if (root == null) return 0; return count(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum); } int count(TreeNode node, int sum) { if (node == null) return 0; return (node.val == sum) + count(node.left, sum - node.val) + count(node.right, sum - node.val); } |
题目看起来很复杂吧,不过代码却极其简洁,这就是递归的魅力。我来简单总结这个问题的 解决过程 :
首先明确,递归求解树的问题必然是要遍历整棵树的,所以 二叉树的遍历框架 (分别对左右孩子递归调用函数本身)必然要出现在主函数 pathSum 中。那么对于每个节点,他们应该干什么呢?他们应该看看,自己和脚底下的小弟们包含多少条符合条件的路径。好了,这道题就结束了。
按照前面说的技巧,根据刚才的分析来定义清楚每个递归函数应该做的事:
PathSum 函数:给他一个节点和一个目标值,他返回以这个节点为根的树中,和为目标值的路径总数。
count 函数:给他一个节点和一个目标值,他返回以这个节点为根的树中,能凑出几个以该节点为路径开头,和为目标值的路径总数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* 有了以上铺垫,详细注释一下代码 */ int pathSum(TreeNode root, int sum) { if (root == null) return 0; int pathImLeading = count(root, sum); // 自己为开头的路径数 int leftPathSum = pathSum(root.left, sum); // 左边路径总数(相信他能算出来) int rightPathSum = pathSum(root.right, sum); // 右边路径总数(相信他能算出来) return leftPathSum + rightPathSum + pathImLeading; } int count(TreeNode node, int sum) { if (node == null) return 0; // 我自己能不能独当一面,作为一条单独的路径呢? int isMe = (node.val == sum) ? 1 : 0; // 左边的小老弟,你那边能凑几个 sum - node.val 呀? int leftBrother = count(node.left, sum - node.val); // 右边的小老弟,你那边能凑几个 sum - node.val 呀? int rightBrother = count(node.right, sum - node.val); return isMe + leftBrother + rightBrother; // 我这能凑这么多个 } |
还是那句话, 明白每个函数能做的事,并相信他们能够完成。
总结下,PathSum 函数提供的二叉树遍历框架,在遍历中对每个节点调用 count 函数,看出先序遍历了吗(这道题什么序都是一样的);count 函数也是一个二叉树遍历,用于寻找以该节点开头的目标值路径。好好体会吧!
LeetCode 有递归专题练习, 点这里去做题
递归优化¶
比较 naive 的递归实现可能递归次数太多,容易超时。
分治算法¶
归并排序 ,典型的分治算法;分治,典型的递归结构。
分治算法可以分三步走:分解 -> 解决 -> 合并
- 分解原问题为结构相同的子问题。
- 分解到某个容易求解的边界之后,进行递归求解。
- 将子问题的解合并成原问题的解。
归并排序,我们就叫这个函数 merge_sort
吧,按照我们上面说的,要明确该函数的职责,即 对传入的一个数组排序 。OK,那么这个问题能不能分解呢?当然可以!给一个数组排序,不就等于给该数组的两半分别排序,然后合并就完事了。
1 2 3 4 5 6 | void merge_sort(一个数组) { if (可以很容易处理) return; merge_sort(左半个数组); merge_sort(右半个数组); merge(左半个数组, 右半个数组); } |
好了,这个算法也就这样了,完全没有任何难度。记住之前说的,相信函数的能力,传给他半个数组,那么这半个数组就已经被排好了。而且你会发现这不就是个二叉树遍历模板吗?为什么是后序遍历?因为我们分治算法的套路是 分解 -> 解决(触底)-> 合并(回溯) 啊,先左右分解,再处理合并,回溯就是在退栈,就相当于后序遍历了。至于 merge
函数,参考两个有序链表的合并,简直一模一样。
LeetCode 上有分治算法的专项练习, 点这里去做题
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:fudonglai
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用