AVL 树

AVL 树,是一种平衡的二叉搜索树。由于各种算法教材上对 AVL 的介绍十分冗长,造成了很多人对 AVL 树复杂、不实用的印象。但实际上,AVL 树的原理简单,实现也并不复杂。

性质

  1. 空二叉树是一个 AVL 树
  2. 如果 T 是一棵 AVL 树,那么其左右子树也是 AVL 树,并且 |h(ls) - h(rs) \leq 1| ,h 是其左右子树的高度
  3. 树高为 O(\log n)

平衡因子:右子树高度 - 左子树高度

树高的证明f_n 为高度为 n 的 AVL 树所包含的最少节点数,则有

f_n= \begin{cases} 1&(n=1)\\ 2&(n=2)\\ f_{n-1}+f_{n-2}+1& (n>2) \end{cases}

显然 \{f_n+1\} 是一个斐波那契数列。众所周知,斐波那契数列是以指数的速度增长的,因此 AVL 树的高度为 O(\log n)

插入结点

与 BST(二叉搜索树)中类似,先进行一次失败的查找来确定插入的位置,插入节点后根据平衡因子来决定是否需要调整。

删除结点

删除和 BST 类似,将结点与后继交换后再删除。

删除会导致树高以及平衡因子变化,这时需要沿着被删除结点到根的路径来调整这种变化。

平衡的维护

插入或删除节点后,可能会造成 AVL 树的性质 2 被破坏。因此,需要沿着从被插入/删除的节点到根的路径对树进行维护。如果对于某一个节点,性质 2 不再满足,由于我们只插入/删除了一个节点,对树高的影响不超过 1,因此该节点的平衡因子的绝对值至多为 2。由于对称性,我们在此只讨论左子树的高度比右子树大 2 的情况,即下图中 h(B)-h(E)=2 。此时,还需要根据 h(A)h(C) 的大小关系分两种情况讨论。需要注意的是,由于我们是自底向上维护平衡的,因此对节点 D 的所有后代来说,性质 2 仍然是被满足的。

h(A)\geq h(C)

h(E)=x ,则有

\begin{cases} h(B)=x+2\\ h(A)=x+1\\ x\leq h(C)\leq x+1 \end{cases}

其中 h(C)\geq x 是由于节点 B 满足性质 2,因此 h(C)h(A) 的差不会超过 1。此时我们对节点 D 进行一次右旋操作(旋转操作与其它类型的平衡二叉搜索树相同),如下图所示。

显然节点 A、C、E 的高度不发生变化,并且有

\begin{cases} 0\leq h(C)-h(E)\leq 1\\ x+1\leq h'(D)=\max(h(C),h(E))+1=h(C)+1\leq x+2\\ 0\leq h'(D)-h(A)\leq 1 \end{cases}

因此旋转后的节点 B 和 D 也满足性质 2。

h(A)<h(C)

h(E)=x ,则与刚才同理,有

\begin{cases} h(B)=x+2\\ h(C)=x+1\\ h(A)=x \end{cases}

此时我们先对节点 B 进行一次左旋操作,再对节点 D 进行一次右旋操作,如下图所示。

显然节点 A、E 的高度不发生变化,并且 B 的新右儿子和 D 的新左儿子分别为 C 原来的左右儿子,则有

\begin{cases} x-1\leq h'(rs_B),h'(ls_D)\leq x\\ 0\leq h(A)-h'(rs_B)\leq 1\\ 0\leq h(E)-h'(ls_D)\leq 1\\ h'(B)=\max(h(A),h'(rs_B))+1=x+1\\ h'(D)=\max(h(E),h'(ls_D))+1=x+1\\ h'(B)-h'(D)=0 \end{cases}

因此旋转后的节点 B、C、D 也满足性质 2。最后给出对于一个节点维护平衡操作的伪代码。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
Maintain-Balanced(p)
    if h[ls[p]] - h[rs[p]] == 2
        if h[ls[ls[p]]] >= h[rs[ls[p]]]
            Right-Rotate(p)
        else
            Left-Rotate(ls[p])
            Right-Rotate(p)
    else if h[ls[p]] - h[rs[p]] == -2
        if h[ls[rs[p]]] <= h[rs[rs[p]]]
            Left-Rotate(p)
        else
            Right-Rotate(rs[p])
            Left-Rotate(p)

与其他平衡二叉搜索树相同,AVL 树中节点的高度、子树大小等信息需要在旋转时进行维护。

其他操作

AVL 树的其他操作(Pred、Succ、Select、Rank 等)与普通的二叉搜索树相同。

其他资料

AVL Tree Visualization 可以观察 AVL 树维护平衡的过程。


评论