线段树套线段树
常见用途¶
在算法竞赛中,我们有时需要维护多维度信息。在这种时候,我们经常需要树套树来记录信息。
实现原理¶
我们考虑用树套树如何实现在二维平面上进行单点修改,区域查询。我们考虑外层的线段树,最底层的 1 到 n 个节点的子树,分别代表第 1 到第 n 行的线段树。那么这些底层的节点对应的父节点,就代表其两个子节点的子树所在的一片区域。
空间复杂度¶
通常情况下,我们不可能对于外层线段树的每一个结点都建立一颗子线段树,空间需求过大。树套树一般采取动态开点的策略。单次修改,我们会涉及到外层线段树的 \log{n} 个节点,且对于每个节点的子树涉及 \log{n} 个节点,所以单次修改产生的空间最多为 \log^2{n} 。
时间复杂度¶
对于询问操作,我们考虑我们在外层线段树上进行 \log{n} 次操作,每次操作会在一个内层线段树上进行 \log{n} 次操作,所以时间复杂度为 \log^2{n} 。 修改操作,与询问操作复杂度相同,也为 \log^2{n} 。
经典例题¶
陌上花开 将第一维排序处理,然后用树套树维护第二维和第三维。
示例代码¶
第二维查询
1 2 3 4 5 6 7 8 | int tree_query(int k, int l, int r, int x) { if (k == 0) return 0; if (1 <= l && r <= sec[x].y) return vec_query(ou_root[k], 1, p, 1, sec[x].z); int mid = l + r >> 1, res = 0; if (1 <= mid) res += tree_query(ou_ch[k][0], l, mid, x); if (sec[x].y > mid) res += tree_query(ou_ch[k][1], mid + 1, r, x); return res; } |
第二维修改
1 2 3 4 5 6 7 8 9 10 | void tree_insert(int &k, int l, int r, int x) { if (k == 0) k = ++ou_tot; vec_insert(ou_root[k], 1, p, sec[x].z); if (l == r) return; int mid = l + r >> 1; if (sec[x].y <= mid) tree_insert(ou_ch[k][0], l, mid, x); else tree_insert(ou_ch[k][1], mid + 1, r, x); } |
第三维查询
1 2 3 4 5 6 7 8 | int vec_query(int k, int l, int r, int x, int y) { if (k == 0) return 0; if (x <= l && r <= y) return data[k]; int mid = l + r >> 1, res = 0; if (x <= mid) res += vec_query(ch[k][0], l, mid, x, y); if (y > mid) res += vec_query(ch[k][1], mid + 1, r, x, y); return res; } |
第三维修改
1 2 3 4 5 6 7 8 | void vec_insert(int &k, int l, int r, int loc) { if (k == 0) k = ++tot; data[k]++; if (l == r) return; int mid = l + r >> 1; if (loc <= mid) vec_insert(ch[k][0], l, mid, loc); if (loc > mid) vec_insert(ch[k][1], mid + 1, r, loc); } |
相关算法¶
面对多维度信息的题目时,如果题目没有要求强制在线,我们还可以考虑 CDQ 分治 ,或者 整体二分 等分治算法,来避免使用高级数据结构,减少代码实现难度。
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:Chrogeek, HeRaNO, Dev-XYS, Dev-jqe
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用