多项式牛顿迭代
Description¶
给定多项式 g\left(x\right) ,已知有 f\left(x\right) 满足:
g\left(f\left(x\right)\right)\equiv 0\pmod{x^{n}}
求出模 x^{n} 意义下的 f\left(x\right) 。
Newton's Method¶
考虑倍增。
首先当 n=1 时, \left[x^{0}\right]g\left(f\left(x\right)\right)=0 的解需要单独求出。
假设现在已经得到了模 x^{\left\lceil\frac{n}{2}\right\rceil} 意义下的解 f_{0}\left(x\right) ,要求模 x^{n} 意义下的解 f\left(x\right) 。
将 g\left(f\left(x\right)\right) 在 f_{0}\left(x\right) 处进行泰勒展开,有:
\sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}}
因为 f\left(x\right)-f_{0}\left(x\right) 的最低非零项次数最低为 \left\lceil\frac{n}{2}\right\rceil ,故有:
\forall 2\leqslant i:\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}}
则:
\sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv g\left(f_{0}\left(x\right)\right)+g'\left(f_{0}\left(x\right)\right)\left(f\left(x\right)-f_{0}\left(x\right)\right)\equiv 0\pmod{x^{n}}
f\left(x\right)\equiv f_{0}\left(x\right)-\frac{g\left(f_{0}\left(x\right)\right)}{g'\left(f_{0}\left(x\right)\right)}\pmod{x^{n}}
Examples¶
多项式求逆 ¶
设给定函数为 h\left(x\right) ,有方程:
g\left(f\left(x\right)\right)=\frac{1}{f\left(x\right)}-h\left(x\right)\equiv 0\pmod{x^{n}}
应用 Newton's Method 可得:
\begin{aligned}
f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\frac{1}{f_{0}\left(x\right)}-h\left(x\right)}{-\frac{1}{f_{0}^{2}\left(x\right)}}&\pmod{x^{n}}\\
&\equiv 2f_{0}\left(x\right)-f_{0}^{2}\left(x\right)h\left(x\right)&\pmod{x^{n}}
\end{aligned}
时间复杂度
T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)
多项式开方 ¶
设给定函数为 h\left(x\right) ,有方程:
g\left(f\left(x\right)\right)=f^{2}\left(x\right)-h\left(x\right)\equiv 0\pmod{x^{n}}
应用 Newton's Method 可得:
\begin{aligned}
f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{f_{0}^{2}\left(x\right)-h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}}\\
&\equiv\frac{f_{0}^{2}\left(x\right)+h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}}
\end{aligned}
时间复杂度
T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)
多项式 exp ¶
设给定函数为 h\left(x\right) ,有方程:
g\left(f\left(x\right)\right)=\ln{f\left(x\right)}-h\left(x\right)\pmod{x^{n}}
应用 Newton's Method 可得:
\begin{aligned}
f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\ln{f_{0}\left(x\right)}-h\left(x\right)}{\frac{1}{f_{0}\left(x\right)}}&\pmod{x^{n}}\\
&\equiv f_{0}\left(x\right)\left(1-\ln{f_{0}\left(x\right)+h\left(x\right)}\right)&\pmod{x^{n}}
\end{aligned}
时间复杂度
T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用