多项式开方

Description

给定多项式 g\left(x\right) ,求 f\left(x\right) ,满足:

f^{2}\left(x\right)\equiv g\left(x\right) \pmod{x^{n}}

Methods

倍增法

假设现在已经求出了 g\left(x\right) 在模 x^{\left\lceil\frac{n}{2}\right\rceil} 意义下的平方根 f_{0}\left(x\right) ,则有:

\begin{aligned} f_{0}^{2}\left(x\right)&\equiv g\left(x\right) &\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}\\ f_{0}^{2}\left(x\right)-g\left(x\right)&\equiv 0 &\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}\\ \left(f_{0}^{2}\left(x\right)-g\left(x\right)\right)^{2}&\equiv 0 &\pmod{x^{n}}\\ \left(f_{0}^{2}\left(x\right)+g\left(x\right)\right)^{2}&\equiv 4f_{0}^{2}\left(x\right)g\left(x\right) &\pmod{x^{n}}\\ \left(\frac{f_{0}^{2}\left(x\right)+g\left(x\right)}{2f_{0}\left(x\right)}\right)^{2}&\equiv g\left(x\right) &\pmod{x^{n}}\\ \frac{f_{0}^{2}\left(x\right)+g\left(x\right)}{2f_{0}\left(x\right)}&\equiv f\left(x\right) &\pmod{x^{n}}\\ 2^{-1}f_{0}\left(x\right)+2^{-1}f_{0}^{-1}\left(x\right)g\left(x\right)&\equiv f\left(x\right) &\pmod{x^{n}} \end{aligned}

倍增计算即可。

时间复杂度

T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)

还有一种常数较小的写法就是在倍增维护 f\left(x\right) 的时候同时维护 f^{-1}\left(x\right) 而不是每次都求逆。

\left[x^{0}\right]g\left(x\right)\neq 1 时,可能需要使用二次剩余来计算 \left[x^{0}\right]f\left(x\right)

Newton's Method

参见 Newton's Method .

Examples

  1. 「Codeforces Round #250」E. The Child and Binary Tree

评论